Root responses to soil physical conditions; growth dynamics from field to cell.
نویسندگان
چکیده
Root growth in the field is often slowed by a combination of soil physical stresses, including mechanical impedance, water stress, and oxygen deficiency. The stresses operating may vary continually, depending on the location of the root in the soil profile, the prevailing soil water conditions, and the degree to which the soil has been compacted. The dynamics of root growth responses are considered in this paper, together with the cellular responses that underlie them. Certain root responses facilitate elongation in hard soil, for example, increased sloughing of border cells and exudation from the root cap decreases friction; and thickening of the root relieves stress in front of the root apex and decreases buckling. Whole root systems may also grow preferentially in loose versus dense soil, but this response depends on genotype and the spatial arrangement of loose and compact soil with respect to the main root axes. Decreased root elongation is often accompanied by a decrease in both cell flux and axial cell extension, and recent computer-based models are increasing our understanding of these processes. In the case of mechanical impedance, large changes in cell shape occur, giving rise to shorter fatter cells. There is still uncertainty about many aspects of this response, including the changes in cell walls that control axial versus radial extension, and the degree to which the epidermis, cortex, and stele control root elongation. Optical flow techniques enable tracking of root surfaces with time to yield estimates of two-dimensional velocity fields. It is demonstrated that these techniques can be applied successfully to time-lapse sequences of confocal microscope images of living roots, in order to determine velocity fields and strain rates of groups of cells. In combination with new molecular approaches this provides a promising way of investigating and modelling the mechanisms controlling growth perturbations in response to environmental stresses.
منابع مشابه
The Responses of Salsola orientalis to Salt Stress
Objective: Salt stress is a world-wide problem and soil salinity is common in arid and semi-arid regions. This study was undertaken to investigate salt tolerance in Salsola orientalis in laboratory and natural conditions and recognize the mechanisms that allow it to tolerate these conditions. Methods: This study had two parts of greenhouse and natural habitats. The treatment s...
متن کاملThe Responses of Salsola orientalis to Salt Stress
Objective: Salt stress is a world-wide problem and soil salinity is common in arid and semi-arid regions. This study was undertaken to investigate salt tolerance in Salsola orientalis in laboratory and natural conditions and recognize the mechanisms that allow it to tolerate these conditions. Methods: This study had two parts of greenhouse and natural habitats. The treatment s...
متن کاملResponses of root growth and distribution of maize to nitrogen application patterns under partial root-zone irrigation
A field experiment was carried out to investigate the effects of varying nitrogen (N) supply andirrigation methods on the root growth and distribution of maize (Zea mays L.) in Wuwei,northwest China in 2011 and 2012. The irrigation treatments included alternate furrow irrigation(AI), fixed furrow irrigation (FI) and conventional furrow irrigation (CI). The N supply treatmentsincluded alternate ...
متن کاملAssessment of Root Growth and Physiological Responses of Four Bread Wheat (Triticum aestivum L.) Cultivars to Salinity Stress
Enlarged root systems that extend into the salt affected soil improve water and nutrient capture by plants and can increase plant productivity. In order to examine root system characteristics of four bread wheat cultivars contrasting in salt tolerance (Arg, Ofoq, Tajan and Morvarid) a greenhouse experiment was conducted with applying two salinity levels (0 and 150 mM NaCl) on plants grown in PV...
متن کاملResponses of rooting traits in peanut genotypes under pre-flowering drought stress
The root is an important plant part contributing to peanut productivity underwater-limited conditions. Root volume, root surface area and root diameter may becharacters responding to pre-flowering drought (PFD) in peanut. The objectives ofthis study were to investigate the responses to PFD for root surface area, rootvolume and root diameter and to determine the inter-relationships among theresp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of experimental botany
دوره 57 2 شماره
صفحات -
تاریخ انتشار 2006